PHYSIOLOGICAL RESPONSE OF SWEET CORN PLANTS OF THE TALENTA VARIETY AFFECTED BY MANGANESE (Mn) SUPPLY DURING THE GROWTH PHASE
Published 2025-10-14
Keywords
- Physiological Response of Sweet Corn,
- Manganese (Mn) Application,
- Plant Growth Phase
Abstract
Manganese is one of the eight essential microelements for plants that are needed in the right amounts to achieve normal growth and yields. Manganese is involved in a number of physiological and metabolic processes of plants such as enzyme activation, protein synthesis, carbohydrate metabolism, lipids, auxin, nucleic acids, gene expression, and the development of reproductive organs. Micronutrients play a role in every phase of plant life starting from seeds, plant vegetative growth, and plant photosynthesis processes. The purpose of this study is to determine the role of Manganese in plant physiology starting from seed germination, plant growth and the rate of photosynthesis at the greening level of leaves. This study includes 4 treatments, namely P1 (Control), P2 (Priming), P3 (Spray), P4 (Priming + Spray). The experiment used a complete random design with each treatment repeated 3 times. The total experimental unit in this study is 12 tiles. The observation variables of this study are germination, plant height, number of leaves, and photosynthesis rate at the greenery level of leaves. Based on the results of the study, it is known that feeding at a concentration of 50 ppm with the p4 method (Priming + Spray) is able to increase germination, vegetative growth of plants and the greenness of plant leaves compared to other treatments. . These results show that the application of Manganese, especially through the priming + spray method of leaves, is effective in optimizing the initial phase of germination, growth and photosynthesis rate at the greening level of maize plant leaves.
References
- Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 13: 905-927.
- Hafeez, R., T. Aziz, M. Farooq, A. Wakeel, Z. Rengel. 2012. Zinc Nutrition In Rice Production Systems: A Review. J. Plant Soil. 361: 203-226.
- Wu, C.Y., L.L. Lu, X.E. Yang, Y. Feng, Y.Y. Wei, H.L. Hao, P.J. Stofella, Z.L. He. 2010. Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zink densities. J. Agric. Food Chem. 2010:6767-6773.
- Sobczyk, MK, dan Gaunt, TR (2022). Pengaruh sirkulasi seng, selenium, tembaga, dan vitamin K1 terhadap hasil COVID-19: studi pengacakan Mendelian. Nutrients .14:233. doi: 10.3390/nu14020233
- Palmgren, MG, Clemens, S., Williams, LE, Krämer, U., Borg, S., Schjørring, JK, dkk. (2008). Biofortifikasi seng pada serealia: masalah dan solusi. Trends Plant Sci . 13, 464–473. doi: 10.1016/j.tplants.2008.06.005
- Kambe, T., Tsuji, T., Hashimoto, A., dan Itsumura, N. (2015). Peran fisiologis, biokimia, dan molekuler transporter seng dalam homeostasis dan metabolisme seng. Physiol. Rev. 95, 749–784. doi: 10.1152/physrev.00035.2014
- Shehata, S., Zayed, B., Naeem, E., Seedex, S., dan El-Gohary, A. (2009). Respons padi ( Oryza sativa L.) terhadap kadar seng yang berbeda dan penderitaan di tanah salin. Egypt J. Appl. Sci . 24. doi: 10.21608/ejss.2021.79007.1451
- Rudani, L., Vishal, P., dan Kalavati, P. (2018). Pentingnya seng dalam pertumbuhan tanaman-Sebuah tinjauan. Int. Res. J. Nat. Appl. Sci . 5, 38–48.
- La Bella, E., Baglieri, A., Rovetto, EI, Stevanato, P., dan Puglisi, I. (2021). Aplikasi semprotan daun ekstrak Chlorella vulgaris: efek pada pertumbuhan bibit selada. Agronomy 11:308. doi: 10.3390/agronomy11020308
- Ghazi, S., Diab, AM, Khalafalla, MM, dan Mohamed, RA (2022). Efek sinergis nanopartikel selenium dan seng oksida terhadap kinerja pertumbuhan, profil hemato-biokimia, respons stres oksidatif dan imun, serta morfometri usus ikan nila ( Oreochromis niloticus ). Biol. Trace Elem. Res . 200, 364–374. doi: 10.1007/s12011-021-02631-3
- Fageria, NK, dan Baligar, VC (2005). Komponen pertumbuhan dan efisiensi pemulihan seng pada genotipe padi gogo. Pesqui. Agropec. Bras. 40, 1211–1215. doi: 10.1590/S0100-204X2005001200008
- Mabesa, RL, Impa, SM, Grewal, D., dan Johnson-Beebout, SE (2013). Membandingkan respons biji-bijian terhadap Zink dari galur pemuliaan padi biofortifikasi (Oryza sativa L.) terhadap pemberian Zink melalui daun. Field Crops Res. 149, 223–233. doi: 10.1016/j.fcr.2013.05.012
- Phattarakul, N., Rerkasem, B., Li, L., Wu, L., Zou, C., Ram, H., dkk. (2012). Biofortifikasi gabah dengan seng melalui pemupukan seng di berbagai negara. Plant Soil 361, 131–141. doi: 10.1007/s11104-012-1211-x
- Slaton, NA, Norman, RJ, dan Wilson, Jr, CE (2005). Pengaruh sumber seng dan waktu aplikasi terhadap penyerapan seng dan hasil gabah padi sawah irigasi banjir. Agron. J. 97, 272–278. doi: 10.2134/agronj2005.0272
- Yuan, L., Wu, L., Yang, C., dan Lv, Q. (2013). Efek pemberian zat besi dan seng melalui daun pada tanaman padi dan akumulasi gabah serta kualitas nutrisi gabah. J. Sci. Food Agric. 93, 254–261. doi: 10.1002/jsfa.5749
- Guo JX, Feng XM, Hu XY, Tian GL, Ling N, Wang JH, dkk. Pengaruh ketersediaan seng dalam tanah, dosis pupuk nitrogen, dan metode pemberian pupuk seng terhadap biofortifikasi seng pada padi. J Agri Sci . (2016) 154:584–97. doi: 10.1017/S0021859615000441.
- Siregar., Z,. A. 2021. Kajian Sorgum: Kajian Potensi sebagai Alternatif Pangan.
- Suarni. (2016). Peranan Sifat Fisikokimia Sorgum dalam Diversifikasi Pangan dan Industri serta Prospek Pengembangannya. Jurnal Litbang Pertanian , 35(3).
- Rukmana, R. dan Y.Y. Oesman. 2005. Usaha Tani Sorgum. Yogyakarta: Kanisius. 40 hal.
- Prihandana, R dan R. Hendroko, 2008. Energi Hijau. Jakarta: Penebar Swadaya. 248 hal.
- Afgani, C. A. 2022. Pengolahan Biji Sorgum Menjadi Tepung Termodifikasi Sebagai Bahan Pangan. https://uts.ac.id/.[ Diakses 17 Agustus 2022].
- Plessis, J.D. 2008. Sorghum Production. South Arica (tZA): Departemen of Agriculture.
- Zastrow, M.L. & V.L. Pecoraro. 2014. Designing hydrolytic zinc metalloenzymes. Biochemistry. 53 (6): 957–978.
- Tuiwong, P., S. Lordkaew, J. Veeradittakit, S. Jamjod, & C. Prom-u-thai. 2022. Seed Priming and Foliar Application with Nitrogen and Zinc Improve Seedling Growth, Yield, and Zinc Accumulation in Rice. Agriculture.12. 144. 1–15
- Choukri, M., A. Abouabdillah, R. Bouabid, O.H. Abd-Elkader, O. Pacioglu, F. Boufahja, & M. Bourioug. 2022. Zink application through seed priming improves productivity and grain nutritional quality of silage corn. Saudi Journal of Biological Sciences. 29 (12): 1–9