Vol. 2 No. 1 (2026): February
Articles

INTEGRATION OF LOCAL ECOLOGICAL KNOWLEDGE IN BIRD-OF-PARADISE CONSERVATION STRATEGY: A CASE STUDY IN THE TABI AND SAIRERI TRADITIONAL AREAS

Edoward Krisson Raunsay
Universitas Cenderawasih
David Reinhard Jesajas
Universitas Cenderawasih
Ortis F. Waromi
Universitas Cenderawasih
Dolfina Costansah Koirewoa
Universitas Cenderawasih

Published 2026-02-12

Keywords

  • Local Ecological Knowledge, Bird of Paradise Conservation, Tabi and Saireri Traditional Areas, Qualitative Methods, Ethnographic Approach

Abstract

This study examines the integration of local ecological knowledge into bird-of-paradise conservation strategies in the Tabi and Saireri customary areas. Using qualitative methods and an ethnographic approach, as well as case studies, the study aims to understand how local indigenous communities manage and conserve birds of paradise through local wisdom practices. Data were collected through in-depth interviews, participant observation, and focus group discussions with indigenous elders, traditional hunters, and other community members who play an active role in bird conservation. Data analysis was conducted thematically to identify values, knowledge systems, and customary rules that support bird-of-paradise conservation. The results show that local ecological knowledge plays a significant role in maintaining the bird's habitat and regulating human activities that could potentially threaten the species' survival. This conservation strategy, based on local knowledge, considers not only ecological aspects but also social and cultural aspects, thus creating a sustainable and community-acceptable approach. These findings underscore the importance of integrating local knowledge into modern conservation policies for effective and sustainable conservation efforts. This study recommends that governments and conservation agencies better value and engage indigenous communities as strategic partners in natural resource management and biodiversity conservation, particularly for birds of paradise, in the Tabi and Saireri customary territories.

References

  1. Albaladejo‐Robles, G., Böhm, M., & Newbold, T. (2023). Species life‐history strategies affect population responses to temperature and land‐cover changes. Global Change Biology, 29(1), 97–109. https://doi.org/10.1111/gcb.16454
  2. Başkent, E. Z. (2021). Assessment and valuation of key ecosystem services provided by two forest ecosystems in Turkey. Journal of Environmental Management, 285, 112135. https://doi.org/10.1016/j.jenvman.2021.112135
  3. Bennett, R. E., Sillett, T. S., Rice, R. A., & Marra, P. P. (2022). Impact of cocoa agricultural intensification on bird diversity and community composition. Conservation Biology, 36(1). https://doi.org/10.1111/cobi.13779
  4. Beyer, R. M., & Manica, A. (2020). Historical and projected future range sizes of the world’s mammals, birds, and amphibians. Nature Communications, 11(1), 5633. https://doi.org/10.1038/s41467-020-19455-9
  5. Borges, F. J. A., & Loyola, R. (2020). Climate and land-use change refugia for Brazilian Cerrado birds. Perspectives in Ecology and Conservation, 18(2), 109–115. https://doi.org/10.1016/j.pecon.2020.04.002
  6. Brambilla, M., & Gatti, F. (2022). No more silent (and uncoloured) springs in vineyards? Experimental evidence for positive impact of alternate inter‐row management on birds and butterflies. Journal of Applied Ecology, 59(8), 2166–2178. https://doi.org/10.1111/1365-2664.14229
  7. Chatterjee, A., Adhikari, S., Pal, S., & Mukhopadhyay, S. K. (2020). Foraging guild structure and niche characteristics of waterbirds wintering in selected sub-Himalayan wetlands of India. Ecological Indicators, 108, 105693. https://doi.org/10.1016/j.ecolind.2019.105693
  8. Chiappe, L. M., Di, L., Serrano, F. J., Yuguang, Z., & Meng, Q. (2020). Anatomy and Flight Performance of the Early Enantiornithine Bird Protopteryx fengningensis : Information from New Specimens of the Early Cretaceous Huajiying Formation of China. The Anatomical Record, 303(4), 716–731. https://doi.org/10.1002/ar.24322
  9. Cooke, R. S. C., Eigenbrod, F., & Bates, A. E. (2020). Ecological distinctiveness of birds and mammals at the global scale. Global Ecology and Conservation, 22, e00970. https://doi.org/10.1016/j.gecco.2020.e00970
  10. Doherty, T. S., Macdonald, K. J., Nimmo, D. G., Santos, J. L., & Geary, W. L. (2024). Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proceedings of the National Academy of Sciences, 121(18). https://doi.org/10.1073/pnas.2316417121
  11. Duda, M. P., Robertson, G. J., Lim, J. E., Kissinger, J. A., Eickmeyer, D. C., Grooms, C., Kimpe, L. E., Montevecchi, W. A., Michelutti, N., Blais, J. M., & Smol, J. P. (2020). Striking centennial-scale changes in the population size of a threatened seabird. Proceedings of the Royal Society B: Biological Sciences, 287(1919), 20192234. https://doi.org/10.1098/rspb.2019.2234
  12. Edney, A. J., & Wood, M. J. (2021). Applications of digital imaging and analysis in seabird monitoring and research. Ibis, 163(2), 317–337. https://doi.org/10.1111/ibi.12871
  13. Ellis-Soto, D., Chapman, M., & Locke, D. H. (2023). Historical redlining is associated with increasing geographical disparities in bird biodiversity sampling in the United States. Nature Human Behaviour, 7(11), 1869–1877. https://doi.org/10.1038/s41562-023-01688-5
  14. Fierro‐Calderón, K., Loaiza‐Muñoz, M., Sánchez‐Martínez, M. A., Ocampo, D., David, S., Greeney, H. F., & Londoño, G. A. (2021). Methods for collecting data about the breeding biology of Neotropical birds. Journal of Field Ornithology. https://doi.org/10.1111/jofo.12383
  15. Firth, A. G., Baker, B. H., Brooks, J. P., Smith, R., Iglay, R. B., & Brian Davis, J. (2020). Low external input sustainable agriculture: Winter flooding in rice fields increases bird use, fecal matter and soil health, reducing fertilizer requirements. Agriculture, Ecosystems & Environment, 300, 106962. https://doi.org/10.1016/j.agee.2020.106962
  16. Fontúrbel, F. E., Orellana, J. I., Rodríguez-Gómez, G. B., Tabilo, C. A., & Castaño-Villa, G. J. (2021). Habitat disturbance can alter forest understory bird activity patterns: A regional-scale assessment with camera-traps. Forest Ecology and Management, 479, 118618. https://doi.org/10.1016/j.foreco.2020.118618
  17. Franks, V. R., Andrews, C. E., Ewen, J. G., McCready, M., Parker, K. A., & Thorogood, R. (2020). Changes in social groups across reintroductions and effects on post‐release survival. Animal Conservation, 23(4), 443–454. https://doi.org/10.1111/acv.12557
  18. Gaget, E., Pavón‐Jordán, D., Johnston, A., Lehikoinen, A., Hochachka, W. M., Sandercock, B. K., Soultan, A., Azafzaf, H., Bendjedda, N., Bino, T., Božič, L., Clausen, P., Dakki, M., Devos, K., Domsa, C., Encarnação, V., Erciyas‐Yavuz, K., Faragó, S., Frost, T., … Brommer, J. E. (2021). Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conservation Biology, 35(3), 834–845. https://doi.org/10.1111/cobi.13648
  19. Galla, S. J., Moraga, R., Brown, L., Cleland, S., Hoeppner, M. P., Maloney, R. F., Richardson, A., Slater, L., Santure, A. W., & Steeves, T. E. (2020). A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide. Evolutionary Applications, 13(5), 991–1008. https://doi.org/10.1111/eva.12916
  20. Heinsohn, R., Lacy, R., Elphinstone, A., Ingwersen, D., Pitcher, B. J., Roderick, M., Schmelitschek, E., Van Sluys, M., Stojanovic, D., Tripovich, J., & Crates, R. (2022). Population viability in data deficient nomadic species: What it will take to save regent honeyeaters from extinction. Biological Conservation, 266, 109430. https://doi.org/10.1016/j.biocon.2021.109430
  21. Horton, K. G., Van Doren, B. M., Albers, H. J., Farnsworth, A., & Sheldon, D. (2021). Near‐term ecological forecasting for dynamic aeroconservation of migratory birds. Conservation Biology, 35(6), 1777–1786. https://doi.org/10.1111/cobi.13740
  22. Jourdan, C., Fort, J., Pinaud, D., Delaporte, P., Gernigon, J., Guenneteau, S., Jomat, L., Lelong, V., Lemesle, J.-C., Robin, F., Rousseau, P., & Bocher, P. (2021). Highly diversified habitats and resources influence habitat selection in wintering shorebirds. Journal of Ornithology, 162(3), 823–838. https://doi.org/10.1007/s10336-021-01873-1
  23. Justin Nowakowski, A., Watling, J. I., Murray, A., Deichmann, J. L., Akre, T. S., Muñoz Brenes, C. L., Todd, B. D., McRae, L., Freeman, R., & Frishkoff, L. O. (2023). Protected areas slow declines unevenly across the tetrapod tree of life. Nature, 622(7981), 101–106. https://doi.org/10.1038/s41586-023-06562-y
  24. Kamp, J., Trappe, J., Dübbers, L., & Funke, S. (2020). Impacts of windstorm-induced forest loss and variable reforestation on bird communities. Forest Ecology and Management, 478, 118504. https://doi.org/10.1016/j.foreco.2020.118504
  25. Koleček, J., Reif, J., Šálek, M., Hanzelka, J., Sottas, C., & Kubelka, V. (2021). Global population trends in shorebirds: migratory behaviour makes species at risk. The Science of Nature, 108(2), 9. https://doi.org/10.1007/s00114-021-01717-1
  26. Lakatos, T., Chamberlain, D. E., Garamszegi, L. Z., & Batáry, P. (2022). No place for ground-dwellers in cities: A meta-analysis on bird functional traits. Global Ecology and Conservation, 38, e02217. https://doi.org/10.1016/j.gecco.2022.e02217
  27. Lerman, S. B., Narango, D. L., Avolio, M. L., Bratt, A. R., Engebretson, J. M., Groffman, P. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Larson, K. L., Locke, D. H., Neill, C., Nelson, K. C., Padullés Cubino, J., & Trammell, T. L. E. (2021). Residential yard management and landscape cover affect urban bird community diversity across the continental USA. Ecological Applications, 31(8). https://doi.org/10.1002/eap.2455
  28. Łopucki, R., Kiersztyn, A., Pitucha, G., & Kitowski, I. (2022). Handling missing data in ecological studies: Ignoring gaps in the dataset can distort the inference. Ecological Modelling, 468, 109964. https://doi.org/10.1016/j.ecolmodel.2022.109964
  29. Manning, D. W. P., & Sullivan, S. M. P. (2021). Conservation Across Aquatic-Terrestrial Boundaries: Linking Continental-Scale Water Quality to Emergent Aquatic Insects and Declining Aerial Insectivorous Birds. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.633160
  30. McMahon, B. J., Doyle, S., Gray, A., Kelly, S. B. A., & Redpath, S. M. (2020). European bird declines: Do we need to rethink approaches to the management of abundant generalist predators? Journal of Applied Ecology, 57(10), 1885–1890. https://doi.org/10.1111/1365-2664.13695
  31. Miranda, L. de S., Awade, M., Jaffé, R., Costa, W. F., Trevelin, L. C., Borges, R. C., Brito, R. M. de, Tambosi, L. R., & Giannini, T. C. (2021). Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: A case study in the eastern Amazon. Biological Conservation, 257, 109148. https://doi.org/10.1016/j.biocon.2021.109148
  32. Morelli, F., Benedetti, Y., & Callaghan, C. T. (2020). Ecological specialization and population trends in European breeding birds. Global Ecology and Conservation, 22, e00996. https://doi.org/10.1016/j.gecco.2020.e00996
  33. Mu, T., & Wilcove, D. S. (2020). Upper tidal flats are disproportionately important for the conservation of migratory shorebirds. Proceedings of the Royal Society B: Biological Sciences, 287(1928), 20200278. https://doi.org/10.1098/rspb.2020.0278
  34. Mudereri, B. T., Mukanga, C., Mupfiga, E. T., Gwatirisa, C., Kimathi, E., & Chitata, T. (2020). Analysis of potentially suitable habitat within migration connections of an intra-African migrant-the Blue Swallow (Hirundo atrocaerulea). Ecological Informatics, 57, 101082. https://doi.org/10.1016/j.ecoinf.2020.101082
  35. Navedo, J. G., & Ruiz, J. (2020). Oversummering in the southern hemisphere by long-distance migratory shorebirds calls for reappraisal of wetland conservation policies. Global Ecology and Conservation, 23, e01189. https://doi.org/10.1016/j.gecco.2020.e01189
  36. Rainsford, F. W., Kelly, L. T., Leonard, S. W. J., & Bennett, A. F. (2022). Fire and functional traits: Using functional groups of birds and plants to guide management in a fire‐prone, heathy woodland ecosystem. Diversity and Distributions, 28(3), 372–385. https://doi.org/10.1111/ddi.13278
  37. Ramírez‐Albores, J. E., Prieto‐Torres, D. A., Gordillo‐Martínez, A., Sánchez‐Ramos, L. E., & Navarro‐Sigüenza, A. G. (2021). Insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. Diversity and Distributions, 27(1), 18–33. https://doi.org/10.1111/ddi.13153
  38. Razak, S. A., Saadun, N., Azhar, B., & Lindenmayer, D. B. (2020). Smallholdings with high oil palm yield also support high bird species richness and diverse feeding guilds. Environmental Research Letters, 15(9), 094031. https://doi.org/10.1088/1748-9326/aba2a5
  39. Reyes‐González, J. M., De Felipe, F., Morera‐Pujol, V., Soriano‐Redondo, A., Navarro‐Herrero, L., Zango, L., García‐Barcelona, S., Ramos, R., & González‐Solís, J. (2021). Sexual segregation in the foraging behaviour of a slightly dimorphic seabird: Influence of the environment and fishery activity. Journal of Animal Ecology, 90(5), 1109–1121. https://doi.org/10.1111/1365-2656.13437
  40. Rouxel, Y., Crawford, R., Cleasby, I. R., Kibel, P., Owen, E., Volke, V., Schnell, A. K., & Oppel, S. (2021). Buoys with looming eyes deter seaducks and could potentially reduce seabird bycatch in gillnets. Royal Society Open Science, 8(5), rsos.210225. https://doi.org/10.1098/rsos.210225
  41. Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A., & Wolters, V. (2020). Landscape associations of farmland bird diversity in Germany and Japan. Global Ecology and Conservation, 21, e00891. https://doi.org/10.1016/j.gecco.2019.e00891
  42. Saunders, S. P., Meehan, T. D., Michel, N. L., Bateman, B. L., DeLuca, W., Deppe, J. L., Grand, J., LeBaron, G. S., Taylor, L., Westerkam, H., Wu, J. X., & Wilsey, C. B. (2022). Unraveling a century of global change impacts on winter bird distributions in the eastern United States. Global Change Biology, 28(7), 2221–2235. https://doi.org/10.1111/gcb.16063
  43. Silva-Monteiro, M., Pehlak, H., Fokker, C., Kingma, D., & Kleijn, D. (2021). Habitats supporting wader communities in Europe and relations between agricultural land use and breeding densities: A review. Global Ecology and Conservation, 28, e01657. https://doi.org/10.1016/j.gecco.2021.e01657
  44. Singh, H., Kumar, N., Kumar, M., & Singh, R. (2020). Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range-restricted vulnerable bird species of the Himalayan region, in response to climate change. Climate Risk Management, 29, 100241. https://doi.org/10.1016/j.crm.2020.100241
  45. Singh, H., Kumar, N., Singh, R., & Kumar, M. (2023). Assessing the climate change impact on the habitat suitability of the range-restricted bird species (Catreus wallichii) in the Indian Himalayan ecosystem. Environmental Science and Pollution Research, 30(57), 121224–121235. https://doi.org/10.1007/s11356-023-30789-x
  46. Soglia, D., Sartore, S., Maione, S., Schiavone, A., Dabbou, S., Nery, J., Zaniboni, L., Marelli, S., Sacchi, P., & Rasero, R. (2020). Growth Performance Analysis of Two Italian Slow-Growing Chicken Breeds: Bianca di Saluzzo and Bionda Piemontese. Animals, 10(6), 969. https://doi.org/10.3390/ani10060969
  47. Soriano-Redondo, A., Franco, A. M. A., Acácio, M., Martins, B. H., Moreira, F., & Catry, I. (2021). Flying the extra mile pays-off: Foraging on anthropogenic waste as a time and energy-saving strategy in a generalist bird. Science of The Total Environment, 782, 146843. https://doi.org/10.1016/j.scitotenv.2021.146843
  48. Sun, B., Lu, Y., Yang, Y., Yu, M., Yuan, J., Yu, R., Bullock, J. M., Stenseth, N. C., Li, X., Cao, Z., Lei, H., & Li, J. (2022). Urbanization affects spatial variation and species similarity of bird diversity distribution. Science Advances, 8(49). https://doi.org/10.1126/sciadv.ade3061
  49. Szymański, P., Olszowiak, K., Wheeldon, A., Budka, M., & Osiejuk, T. S. (2021). Passive acoustic monitoring gives new insight into year-round duetting behaviour of a tropical songbird. Ecological Indicators, 122, 107271. https://doi.org/10.1016/j.ecolind.2020.107271
  50. Tarjuelo, R., Margalida, A., & Mougeot, F. (2020). Changing the fallow paradigm: A win–win strategy for the post‐2020 Common Agricultural Policy to halt farmland bird declines. Journal of Applied Ecology, 57(3), 642–649. https://doi.org/10.1111/1365-2664.13570
  51. Valente, J. J., Bennett, R. E., Gómez, C., Bayly, N. J., Rice, R. A., Marra, P. P., Ryder, T. B., & Sillett, T. S. (2022). Land-sparing and land-sharing provide complementary benefits for conserving avian biodiversity in coffee-growing landscapes. Biological Conservation, 270, 109568. https://doi.org/10.1016/j.biocon.2022.109568
  52. Vélez, D., Tamayo, E., Ayerbe-Quiñones, F., Torres, J., Rey, J., Castro-Moreno, C., Ramírez, B., & Ochoa-Quintero, J. M. (2021). Distribution of birds in Colombia. Biodiversity Data Journal, 9. https://doi.org/10.3897/BDJ.9.e59202
  53. Villaseñor, N. R., Chiang, L. A., Hernández, H. J., & Escobar, M. A. H. (2020). Vacant lands as refuges for native birds: An opportunity for biodiversity conservation in cities. Urban Forestry & Urban Greening, 49, 126632. https://doi.org/10.1016/j.ufug.2020.126632
  54. Virkkala, R., Leikola, N., Kujala, H., Kivinen, S., Hurskainen, P., Kuusela, S., Valkama, J., & Heikkinen, R. K. (2022). Developing fine‐grained nationwide predictions of valuable forests using biodiversity indicator bird species. Ecological Applications, 32(2). https://doi.org/10.1002/eap.2505
  55. Wang, B., Xu, Y., Price, M., Yang, N., Liu, W., Zhu, B., Zhong, X., & Ran, J. (2021). Niche partitioning among three montane ground‐dwelling pheasant species along multiple ecological dimensions. Ibis, 163(1), 171–182. https://doi.org/10.1111/ibi.12842
  56. Zhu, B., Verhoeven, M. A., Velasco, N., Sanchez‐Aguilar, L., Zhang, Z., & Piersma, T. (2022). Current breeding distributions and predicted range shifts under climate change in two subspecies of Black‐tailed Godwits in Asia. Global Change Biology, 28(18), 5416–5426. https://doi.org/10.1111/gcb.16308
  57. Znidersic, E., Towsey, M., Roy, W. K., Darling, S. E., Truskinger, A., Roe, P., & Watson, D. M. (2020). Using visualization and machine learning methods to monitor low detectability species—The least bittern as a case study. Ecological Informatics, 55, 101014. https://doi.org/10.1016/j.ecoinf.2019.101014